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Abstract 

It has become clear in the last few years that there is a trend towards integrated digital 
services. P d e l  to the development of public Integrated Services Digital Network (ISDN) 
is service integration in the local area (e.g. a campus, a building, an aircraft). The types 
of services to be integrated depend very much on the specific local environment. However, 
applications tend to generate data t&c belonging to one of two classes. According to 
IEEE 802.4 terminology, the first major class of traffic is termed synchronous, such as 
packetized voice and data generated from other applications with real-time constraints, 
and the second c ias  is cdied asynchronous which includes most computer data traffic 
such as file transfer or facsimile. 

In this report, we examine the IEEE 802.4 token bus protocol which has been designed 
to support both synchronous and asynchronous traffic. The protocol is basically a timer- 
controlled token bus access scheme. By a suitable choice of the design parameters, it can 
be shown that access delay is bounded for synchronous traffic. As well, the bandwidth 
allocated to asynchronous traffic can be controlled. We present a throughput analysis of 
the protocol under heavy load with constant channel occupation of synchronous traffic and 
constant token-passing times. 



1. Introduction. 

The phenomenal development of sophisticated digital technology has made major 

impacts on the communication industry. Rapid transitions to digital communication ser- 

vices are being made in local and long-haul public networks. The concept of using the 

same network to support multiple services such as voice, video, computer data, efc., has 

become more attractive than ever before. In the public domain, standards are being drawn 

for ISDN. At the same time, alternatives for service integration in the local area are being 

studied. One possible approach is to use advanced circuit switching techniques. Another 

approach is to employ a local area network (LAN), We are interested in the latter approach 

in this report. 

Traditionally, LAN’s have been designed to handle bursty computer traffic through 

statistical multiplexing techniques. The incorporation of real-time traffic introduces strin- 

gent constraints on delay. For example, packetized voice has a deadline requirement. Voice 

packets that cannot be delivered within a certain deadline are discarded, leading to degra- 

dation in voice quality. In an automated manufacturing environment, data packets for 

machine control purposes must be delivered in time to avoid undesirable or sometimes 

ula,.drous A:,,, 

may very much rely on tight synchronization of processes which communicate with each 

other through a local network. The strict delay constraints required by these applications 

cannot be adequately met by LAN protocols originally designed for conventional computer 

communication. 

effects. In z distiiluiiteb e ~ i ~ ~ i t i i i g  eiiviioiimeiit, the peifciillaiice of the ~ y s i e ~ t l  

There have been various studies and proposals of LAN protocols designed to support 

real-time applications together with conventional computer applications [7]-(181. In this 

report, we examine one of these proposals, namely, the IEEE 802.4 token bus standard 1181. 

In this standard, timers are introduced to control channel access in addition to the basic 

token bus multi-access protocol. As a result, the protocol has the capability of accommo- 



dating both synchronous (time-critical) and asynchronous (non-time-critical) traffic. The 

idea behind this protocol is similar to other cycle-limiting token-passing schemes [12]-[15]. 

The basic design parameters in the IEEE 802.4 protocol are called token hold times and 

target token rotation times. We shall investigate the effects of these system parameters on 

the throughput performance of different classes of traffic. 

In the next section, we shall give a brief description of the IEEE 802.4 token bus 

protocol under normal fault-free conditions, paying particular attention to the timer control 

mechanism. In section 3, we develop a generalized model to study the characteristics of 

this protocol. In section 4, we present the major analytic results that reveal how different 

users share the channel bandwidth under the heavy load situation. By a suitable choice 

of the design parameters, synchronous traffic is guaranteed a bounded access delay and a 

fixed service duration for each channel access. Furthermore, asynchronous traffic shares 

the excess bandwidth according to the target token rotation times assigned. Finally, we 

conclude with a summary. 

2 



2. Description of the IEEE 802.4 Protocol under Normal 
Operat ion Conditions. 

The access protocol described in the IEEE 802.4 standard (181 is based on token- 

passing on a bus. Under fault-free conditions, a logical ring is maintained and the token 

is passed according to the logical ring. Considerable overhead is needed .to maintain the 

logical ring against communication errors and station failures. Since we are only interested 

in the characteristics of the protocol under normal conditions, we shall assume a logical ring 

has been established and no error conditions are present. The interested readers should 

refer to [lS] for a thorough description of the error recovery functions. Of particular 

interest in this protocol is the time-out mechanism that limits the channel access of each 

asynchronous class. 

In the IEEE 802.4 token bus standard, there are four globally defined classes of 

services, labelled 0, 2, 4 and 6. Each station in the logical ring is given full access to all 

four classes of services. Class 6 service is provided for the so-called synchronous traffic (e.g. 

voice) and other classes are for asychronous traffic (e.g. file transfer). For convenience, we 

shall classify class 6 service or traffic as type I and other classes as type 11. A time value 

ca!!ed toker, hold time (THT) is assigned fer c!ms 6 service and 3 ether time :dues ca!!cd 

target token rotation times (TRT’s) are assigned for classes 0, 2 and 4. 

Each station is equipped with 4 loadable counters, Co, C2, C4, c6. Each counter 

counts down continuously from a positive value to zero. When a counter reaches zero, it 

remains a t  zero until a new value is loaded. Counters Co, C,, C4 are associated with classes 

0, 2, 4 respectively. Upon reception of a token, a station loads c6 with THT and transmits 

class 6 packets until Cs expires or no further class 6 packets remain. If Cs expires during 

a packet transmission, the current transmission will nevertheless be completed. After 

servicing class 6 traffic, the value of C4 will be loaded into c6 and immediately the TRT 

assigned to class 4 will be loaded into C4. Then class 4 is serviced until c6 expires or no 
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further class 4 traffic. The above procedure is repeated for class 2 and then for class 0. 

Then the station releases the token to the next logical station. 

As we can see, the use of timers to control service requires minimal modification of 

the standard token-passing protocol. As well, it does not require any station to broadcast 

their status as in many reservation schemes. Thus, the THTITRT scheme is most attrac- 

tive both in terms of cost and robustness. The question is how well can the THTITRT 

scheme support multiple types of traffic. 

Although the detailed behaviour of the above THTITRT scheme is not obvious, 

the philosophy is clear. The time-out mechanism ensures a finite bound on the cycle, that 

is, the period between successive token receptions at  a specific station. Upon reception of 

the token, each station is guaranteed class 6 service of duration equal to THT. Packets of 

any other class can gain access to the channel only if the associated counter of that class 

does not expire before loading it into c6. This means that if a given cycle is unusally large, 

then services of classes 0, 2 and 4 will be deferred which would tend to reduce the next 

cycle. 

Clearly, cIass 6 at a station has a somewhat preferred status over other classes since 

it is guaranteed non-zero service in each cycle. The differences among the TRT’s of classes 

0, 2 and 4 restrict the use of the channel by these classes to different extents. We shall 

derive analytic results regarding the throughput of each class under heavy load. 
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3. Queueing Model. 

3.1 General Descriptions of Model. 

The first step to construct a versatile analytic model for the IEEE 802.4 access 

scheme is to consider each class at a station to be a separate queue in the system. Thus, 

we do not have the concept of a station any more. When the token arrives a t  a queue, the 

queue will be serviced according to the THTITRT protocol. With this abstraction, we 

are led to consider the general model of N queues serviced by a single server in a cyclic 

order, that is, 1 2 3 . . . N, then back to 1 and repeat the pattern. In this general model, 

N is an arbitrary positive integer. Furthermore, different type I queues may have different 

THT’s. Similarly, type I1 queues may be assigned different TRT’s. 

In token-passing with the cyclic order described above, the kth cycle of queue i is 

the period between the kth and (k + 1)st receptions of the token by queue i. Thus, the 

cycles associated with different queues are not the same. According to the THT/TRT 

protocol, in each cycle a type I queue can receive service up to its THT or until the queue 

is empty. However, a type I1 queue can only receive service up to its TRT less the length 

of the previous cycle or until the queue becomes empty; if the length of the previous cycle 

exceeds TRT, then that queue will not receive any service in the current cycle. If the 

service timer expires during a packet transmission, the transmission shall nevert heless be 

completed. This means that the actual service time of a queue can exceed its quota; we 

shall call this the overflow eflect. After servicing a queue, the server moves to the next 

logical queue; the time it takes the server to move from a given queue to the next is called 

the walk tame or switching overhead. 

We limit our study of the above system when all type I1 queues are heavily loaded, 

that is, every type I1 queue always has packets to send. We further assume the service of 
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a type I queue is constant over all cycles and that the walk time from a given queue to 

the next is constant over all cycles as well. The overflow effect is assumed to be negligible, 

that is, a queue cannot receive service exceeding its quota in any given cycle. Finally, we 

consider a time-slotted system where all time quantities are measured in integer multiple of 

slots. This is not a major limitation since the size of the basic time slot can be arbitrarily 

small to accommodate continuous systems. 

3.2 System Variables and Parameters. 

In this sub-section, we define the following non-negative integer-valued system vari- 

ables and parameters. Let 

= THT assigned to queue i if it is of type I, 

TRT assigned to queue i if it is of type 11, 

Switching overhead or walk time from queue i to its logical successor 

(assumed independent of k), 

Service time of queue i if it is of type I (assumed independent of k), 

Length of the Icth cycle of queue i, 

Service time of queue i in the kth cycle. 

= 

= 

= 

= 

= 

Using the above definitions, we can write down the following relations with summations 

defined as zero if the lower summation index exceeds the upper index. The length of the 

lcth cycle of queue i is given by 

For type I queues, 

( 3 . 2 ~ )  



and for type I1 queues, 

q('+') = max(TRz - c;(~),  0) (3.2b) 

3.3 Imbedded Markov Chain. 

The recursive relations (3.1), ( 3 . 2 ~ )  and (3.2b) among service times and cycle times 

show that the vector ?(k) = (T,(k), Tik), . . . , T N  (k) ) constitutes a deterministic Markov Chain. 

Given 5?(k), we can compute Cik) from (3.1) and then Tl ('+l) from ( 3 . 2 ~ )  or (3.2b). Sim- 

ilarly, T2 (k+l) , . . . , Tf+') can be successively calculated using the same relations. Thus, 

we can obtain ?(k+l) from ?(k) deterministically. 

Since the service times Hi of type I queues are constant over all cycles, they appear 

as part of switching overheads as far as type I1 queues are concerned. Thus, we can consider 

the equivalent system consisting only of type I1 queues with modified switching overheads 

without loss of generality. 

We can further transform the system to one that has zero overheads by rewriting 

(3.1) and (3.2b) as 

where 

N 

i=l 
w = c w ;  (3.5) 

We disregard equation ( 3 . 2 ~ )  since we are considering the equivalent system with only type 

I1 queues and modified overheads. Relations (3.3) and (3.4) correspond to a system with 

no switching overheads, TRT; modified as (TRT; - W) and Ci(k) modified as (C:k' - W). 
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If the modified TRT; is less than zero for queue i, then queue i will not receive any service 

at  all. Such queues can be effectively removed from the system. Therefore, it is sufficient 

to consider the system with only type I1 queues with positive modified TRT and zero 

switching overheads. We shall devote most of our attention to this equivalent system. 

Nevertheless, we should bear in mind the relations between the original system and its 

equivalent so that we can convert one from another without any difficulty. 

3.4 Definitions and Terminology. 

With the discussion from last subsection, we restrict ourselves to systems with only 

type I1 queues with positive TRT and no switching overheads. The Markov relations (3.1) 

and (3.26) can now be written as 

Our goal is to study the transitions of the state vector ?(k). The Markov relations (3.6) 

and (3.7) can be equivalently expressed by a state-transition diagram. Since T;'k' 5 TRT, 

for all h and i, the set of possible state vectors is finite. It is therefore possible to construct 

the state-transition diagram consisting of all state vectors. Let us consider a few examples. 
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Example 3.1 N = 2, TRT1 = 3, TRT2 = 2. 

9 @@-@ 
I 

Example 3.2 N = 2, TRTl = 3, TRT2 = 1. 
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Example 3.3 N = 2, TRTl = TRTz = 3. 

Clearly, the number of possible state vectors can be extremely large even for moderate 

values of N and TRTi. The challenge is to find a simple characterization of the unwieldy 

stat e- t ransition diagram. 

We define a set of terms which will be used later, but we advise the reader not to 

linger too long on the significance of these definitions in the first reading. As we progress 

in the next section, the reader shall see the necessity of defining these terms; a t  that point, 

the reader can refer to the definitions in this sub-section. 

Classification of states. 

We call the N-tuple (TI (k) , T(k)  , . . . ,Tg)) of service times a s f a i e  in the Eth cycle. 

The (N + 1)-tuple (Tik),Tlk), . . . , TF), T,(kS')) is the ezfended s f a f e  in the kth cycle. State 

s2 is accessible or reachable from state s1 if starting from 31 ,  it is possible to enter s2 

after a finite number of state transitions. States that are reachable from at least one state 

are reachable sfafes ,  otherwise they are unreachable. States are communicaiing if they are 

t 
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reachable from one another. Communicating states are also known as r e c u r r e n t  states. 

States that are not recurrent are t rans i en t  s ta tes .  A set of communicating states is called 

a r e c u r r e n t  s e t  or a loop. 

Classification of queues. 

Next, we classify the queues according to their TRT's. Let TRZ E ((~1, cy2, . . . , C Y M }  

> (YM > 0. A queue with TRT equal to crk is said to have for all i where cy1 > cy2 > 
priority k. A k-priority queue is said to have a higher priority than a (k + i)-priority queue 

for positive i .  We let Nk denote the number of k-priority queues in the system. It is also 

convenient to let the indices of 1-priority queues to be p i  for 1 5 i 5 NI where p ;  is an 

increasing sequence. Queue p ;  is called the ith 1-priority queue. 

System operating modes. 

- 
With the above terminology, we can classify recurrent sets into dep le t ion  and n o n -  

dep le t ion  types. A dep le t ion  recurren t  set  is a loop in which no queues, except the ones with 

priority 1, receive any service. In such a case, the system is said to operate in dep le t ion  

m o d e ,  otherwise the system is operating in n o n - d e p l e t i o n  m o d e .  The loop in example 3.2 

is of the depletion type whereas the loop in example 3.1 is of the non-depletion type. In a 

depletion loop, the 1-priority queues are depleting the services of other queues. 

Pre-group and post-group. 

We now introduce the ideas of pre-group and pos t -group  for the case when queue 

1 has priority 1. Let p l  = 1. The extended state vector (f(k),~k+l)) can be partitioned 

into (N1+ 1) sub-vectors according to the positions of the 1-priority queues. There are two 

conceivable ways of performing the partition. The first way is such that the first component 

of each sub-vector corresponds to the service of a 1-priority queue; these sub-vectors are 

called pre-groups .  The second way is such that the last component of each sub-vector 

corresponds to the service of a 1-priority queue; these sub-vectors are called pos t -groups .  
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Let Ul (k) , U 2  (k) ,V3 (k) ,..., UNl (k) ,UNltl (k) 

(f(k),Tiktl)), that is, (?(k),T{ktl)) = (Ul (k) , U2 (k) , . . . , UN, (k) , UNltl). (k) 

pre-group of the kth cycle for 1 5 i 5 N1 and UNltl (k) 

be a partition of the extended state vector 

If the first compo- 

nent of each Ui(k) corresponds to the service of a 1-priority queue, then Ui(k) is the ith 

is the 0th pre-group of the Eth cycle. 

The first component of each pre-group is called the group leader. Similarly, if the last 

component of each corresponds to the service of a 1-priority queue, then Ui(k) is called 

the (i - 1)th pod-group of the kth cycle for 1 5 i 5 Nl + 1. The last component of each 

post-group is called the group frailer. 

As an example, let N = 10 and queue 1,3,4,9 be 1-priority queues while others are 

of lower priorities. Then (Tl (k) , T2 (k) ), (Tik’), (T4 (k) ,T5 (k) , . . . , Tik’), (Tik), Ti:)) and (Tikt’)) 

are the lst,  2nd, 3rd, 4th and the 0th pre-groups in the kth cycle, and that (T2 , T3 ), 

(ktl))  are the lst ,  2nd, 3rd, 

( k t l )  ( k t l )  

( k t l )  T ( k t 1 )  (k+l) ( k t 2 )  (Tikt1)), (T5 9 6 Y . . . , T ~ ( ~ + ~ ) ) ,  (T1(J ) and 
- 

4th and 0th post-groups in the (k + 1)st cycle. 

Surplus and deficit. 

Finally, we would like to introduce the concepts of surplus and deficif for a system 

with at  least one 2-priority queue. Let queue i be a 1-priority queue. The component $k) 

of the state vector ?(k) is said to have a zero deficit and a surplus of (a1 - az) - ~ k )  if 

Ti (k) 5 (a1 - a2), otherwise it has zero surplus and a deficit of Tjk’ - (a1 - a2). For queue 

Tj (k) is always zero. By definition, surplus and deficit are both non-negative quantities. 

j of a lower priority, the deficit of the component q(k’ is given by ek) and the surplus of 

The surplus of a state is the sum of surpluses of all its components and the deficit 

of a state is the sum of deficits. The surplus and deficit for a pre-group, a post-group and 

an extended state are defined analogously. 

~~ ~ _ _ _ _ _  
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4. Analytic results. 

In the previous section, we have formulated step-by-step a state transition problem. 

We defined a state and an extended state, a pre-group and a post-group, depletion loops 

and non-depletion loops. We also introduced the concepts of surplus and deficit. In this 

section, we shall make use of these concepts to derive results concerning the bandwidth 

allocated to each queue under heavy load. 

4.1 Bound on Cycle Length. 

The purpose of the TRT's is to limit service times of type I1 queues to guarantee a 

maximum access delay of type I queues. This is demonstrated by the following proposition. 

Proposition 4.1 

the largest TRT assigned. 

The sum of components of a reachable state is less than or equal to c q ,  

Proof 

Let f t k + l )  be an arbitrary reachable state and ?tic) be the previous state. From 

equations (3.6) and (3.7), we have 

Adding C!";') - Tik+') to both sides, we get 

The above relation is an iterative one in the partial sums of T,(k+l). By successive substi- 

tutions, we have 
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Since Tik) 2 0 for 1 5 I 5 N, we have 

The above result shows that the cycle time of queue 1 is less than or equal to a1 after the 

system has run for at least one cycle. Clearly, the result also applies to other queues by 

cyclic shifts of queue indices, that is, Cjk) 5 cy1 for 1 5 I 5 N and h > 1. In fact, the 

result holds true even when the type I1 queues are not heavily loaded. The proof is exactly 

the same except the equalities (4.1)-(4.3) are replaced by inequalities. 

We can translate Proposition 4.1 from the equivalent system to the original system. 

Let cy?) be the largest TRT in the original system, W be the total walk time and H be 

the total type I service in a cycle. If ap) < (H + W), then no type I1 queues will receive 

any service and all cycle times are equal to (H + W). If ap) > (H+ W), then the largest 

TRT in the equivalent system is given by a?') = a1 (erg) - (H + W). Since the cycle times 

in the equivalent system is no larger than  CY^*), the cycle times in the original system must 

be no larger than ale*) + (H + W) which is equal to cy?). Therefore we conclude that the 

cycle times of all queues, type I or type 11, in the original system are less than or equal to 

rnax(aPg), H + w). 

The access delay of a packet is defined as the time elapsed after the packet has 

reached the head of the queue until it receives service. Clearly, the access delay is less than 

or equal to the cycle time for type I queues; if the cycle time is bounded, then the access 

delay is also bounded. This is indeed the desirable feature common to all cycle-limiting 

token-passing schemes. It is noted that type I1 queues may not have bounded access delay 

even though the cycle times are bounded. 
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4.2 Symmetric Type I1 Queues. 

By symmetry, if all queues are assigned the same TAT, then there should not be 

any difference in the services of each queue. This is indeed the case as shown by the 

following result. 

Proposition 4.2 If TRT; = cy1 for all i, then all queues will have the same throughput. 

Proof 

Let us compute ? ( k + l )  = ( j l ,  j , ,  . . . , j ~ )  from ?(k) = ( i l ,  i 2 , .  . . , i ~ )  where k > 1. 

Since ?('I is a reachable state, we have E:==, ik 5 cy1 . Thus, j l  = cy1 - i k .  Successive 

calculations of the other components show that j 2  = il, j 3  = i 2 ,  . . . , j N  = irv-1. We can 

therefore construct subsequent states in a similar fashion and display them in matrix form 

N 

... 

... 

... 

... 

... 

... 

... 

ZN-1 
? N - 2  
? N - 3  
I N - 4  

i l  
1'1 
ZN 

i N  
I N - 1  
zN-2  
I N - 3  

The rows of the above matrix represent consecutive state vectors. Clearly, the matrix 

recurs its we continue the listing. Thus, the matrix represents a loop of the system. Since 

8') is an arbitrary reachable state, we conclude that all loops of the system must have 

the structure of the above matrix. Furthermore, all reachable states are recurrent states. 

The average service for the Ith queue per cycle is given by the sum of elements of 

the Ith column divided by (N + 1) which is Q ~ / ( N  + 1). The average cycle length of any 

queue is the sum of all the elements divided by (N + 1) which is ( N c q ) / ( N  + 1). The 

throughput is given by the ratio of the average service per cycle to the average cycle length. 

Thus, the throughput of each queue in this symmetric equivalent system is 1/N. 

I3 

15 



Let us look into the detailed structure of the matrix display of a loop. The matrix 

is an (N + 1) by N matrix with a t  most (N + 1) different elements. If we list the ele- 

ments in a linear fashion by concatenating successive rows, we shall see the extended state 

(i1, iz, . . . , iN, jl) being replicated N times. As well, each column of the above matrix can 

be obtained by cyclic shifts of the extended state. The successive cycle lengths of each 

queue are, in cyclic order, (a1 - jl), (ai - i ~ ) ,  (ai - ~ N - I ) ,  (ai - i ~ - 2 ) ,  . . . , (a1 - il). 

If we define the period of a vector p to be the smallest number such that cyclic 

shifting the vector p times will yield the same vector, then it is clear that the period of 

a loop is the period of its extended state vectors. The largest possible period of a loop 

is (N + 1). Shorter periods are possible but they must be divisors of (N + 1). One can 

construct all possible loops by examining all (N + 1)-tuples (il, i2,. . . , iN,jl) such that 

the sum of components is ( ~ 1 ;  tuples that are cyclic shifts of each other belong to the same 

loop. 

Notice that the throughput of a type I1 queue in the original system is less than 

1/Nzz where Nzz is the number of type I1 queues in the original system. Using the defini- 

tions in subsection 4.1, the average service of type I1 queues per cycle is 

and the average cycle time in the original system is given by 

From the above equations, it is clear that the throughput of a type I1 queue is less than 

l/Nzz. Furthermore, the throughput of a type I1 queue decreases as H or W increases, 

but increases as ap) increases. Thus, we see the tradeoff among the number of type I 

queues the system can support, the required bound on access delay and the throughput of 

type 11 queues. 
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4.3 Existence of Depletion Loops. 

In the last sub-section, we have found a simple characterization of all loops for a 

symmetric system. Next we would like to consider the general asymmetric system, that is, 

one with a t  least one 2-priority queue. Our goal is again to study the loops that determine 

the behaviour of the system after the system has run for an arbitrarily long period of time. 

The state space of a general asymmetric system, however large, is finite. Thus, there 

is at  least one loop in the state-transition diagram. Our first step to study the loops of a 

general asymmetric system is to find out whether it is possible for the 1-priority queues to 

deplete services of all other queues, that is, whether there exist depletion loops. 

Recall from sub-section 3.4 that in a depletion loop all queues other than 1-priority 

queues receive zero services. Thus the matrix display of a depletion loop, if there is one, 

will be similar to the matrix display of a loop of a symmetric system except we have to 

insert missing columns of zeros for the low priority queues. With this picture in mind, we 

can deduce a necessary and sufficient condition for the existence of depletion loops. 

Proposition 4.3 

and only if (N1 + l ) ( q  - a2) 2 cy1. 

For a system with at least one 2-priority queue, depletion loops exist if 

Proof 

If there exists a depletion loop, let il be the service of the Ith 1-priority queues in 

a state within this loop. Using exactly the same argument from Proposition 4.2, we can 

display the depletion loop in the following matrix form 

0 
0 
0 

where (jl + Ezl il)= q. 
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Clearly, the cycle lengths of a low priority queue, are in cyclic order, (a1 - jl), 

(01 - iN1),  (a1 - iNl - l ) ,  (ai - iN1-2), . . . , (ai - ii). Since all low priority queues receive 

zero services in a depletion loop, the cycle lengths must be greater than or equal to all the 

elements in {q, a3, . . . , a ~ } .  In particular, we must have (a1 - jl) 2 a 2  and (a1 -i,) 2 a2 

for 1 5 1 5 N1. Summing the (N1 + 1) inequalities, we have 

Since ( j ,  + CZl i,)= 01, we have 

Conversely, if inequality (4.8) is satisfied, then it is a simple matter to show that 

it is possible to choose (N1 + 1) non-negative integers, all no more than (a1 - a2), while 

summing to a1. We give one possible choice of these ( N l +  1) numbers. Let L be the largest 

integer such that a1 > L(a1 - a2). Clearly, L < (N1 + 1) by inequality (4.8). We let the 

first L of the (N1+ 1) integers be (a1 - a 2 ) ,  the (L + 1)st integer be (ai - L(a1 - a2)) 

and the rest be zero. 

From the above set of (rV1 + 1) integers, select any subset of N1 integers. Consider 

the state with all low priority queues receive zero services and the N1 1-priority queues 

receive services given by the elements of the chosen subset. Straightforward calculations 

of subsequent states show that the system is in depletion mode. Thus, the converse of the 

proposition is established. 

0 

We can rewrite (4.8) as N1a1 2 (N1 + l ) c r z .  Thus, we can view the inequality either 

as a lower bound on a1 or as an upper bound on a2. Proposition 4.3 shows that by choosing 

a sufficiently small value for a2, there always exist depletion loops. Alternatively, we can 
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choose a large enough value for a2 such that the 1-priority queues do not monopolize the 

network. This agrees with our intuition that the parameters TRT’s are limiting factors 

for queue services. 

Proposition 4.3 guarantees only existence of depletion loops rather than ruling out 

the possibility of non-depletion loops. Again by intuition, we expect that by reducing  CY^ 

gradually, we would always come to a point where there are only depletion loops. That 

threshold, if exists, must clearly be less than or equal to ( N l c q ) / ( N l  + 1). Surprisingly, 

that threshold is exactly ( N l a l ) / ( N l  + 1). The proof requires a detailed study of the 

surplus and deficit of successive extended states. 

4.4 Surplus and Deficit. 

From now on, we shall assume without loss of generality that p l  = 1, that is, the 

first queue has priority 1. In the light of the result from last sub-section, we can now 

understand the peculiar definitions of surplus and deficit given in sub-section 3.4. Recall 

from the proof of Proposition 4.3 that if the system is in an extended state where all 1- 

priority queues receive services no more than (cy1 - a2) and all low priority queues receive 

zero services, then the system will be operating in depletion mode. Equivalently, we can 

assert that if the system is in an extended state with zero deficit, then the system will 

be in depletion mode. The deficit of an extended state is a measure of “how close’’ the 

extended state is to an extended state in a depletion loop. Whether the system will operate 

in depletion mode depends solely on how the deficit of the extended state changes as the 

system evolves. 

Closely related to the deficit is the surplus. We shall show in this subsection that 

the difference between surplus and deficit of an extended state is constant and that both 

of them decrease as the system evolves. 
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Proposition 4.4 

state is given by 

The difference between surplus S$!) and deficit DF) of the kth extended 

Proof 

The result follows directly from the definitions of surplus and deficit. Consider the 

extended state (F(k) ,Tikt l ) )  where k > 1. Let us look at  the contribution of a single 

component of the extended state to the quantity (DF) - ST (k) ). If queue 1 has priority 1, 

a surplus or deficit. Similarly, the contribution from Tl (ES1) is (T,(k+l) - (a1 - a,)). If 

then the contribution of T/k) will be (T/k) - (a1 - a2)) independent of whether T/k’ has 

queue 1 has a lower priority, then the contribution of T/k’ will just be T/k). Therefore, by 

summing the contributions from all components, we have 

(4.10) 

Replacing the sum of components of an extended state by a1 gives (4.9). 

Proposition 4.4 shows that the difference between surplus and deficit of an extended 

state depends only on the system parameters N1, all a2 and is thus a constant. As the 

system evolves, the surplus and deficit vary such that their difference is constant. If a1 

is less than (N1 + l)(crl - QZ), then surplus exceeds deficit and vice versa. Notice that 

Proposition 4.4 is consistent with Proposition 4.3. From Proposition 4.4, we see that 

Dg) > 0 if cy1 > (Nl  + l ) ( c y ~    cy cy^); this implies that there can be no depletion loops which 

is the same conclusion drawn from Proposition 4.3. 

The next result shows that surplus and deficit in the same pre-gmup “cancel” each 

other, leading to the monotonicity property of surplus and deficit of an extended state. 
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(k) (k) Proposition 4.5 Let Spf,i  and Dpr,; be the surplus and deficit of the ith pre-group in the 

kth extended state, Spa,; (k) and Dpo,i (k) be the surplus and deficit of the ith post-group in the 

kth extended state, respectively. Then we have 

(k) if Spr,; 2 Dpr,i, then Sp , ;  (let') = S(k) .  - D (k) . and D:::') = 0, 
P'J P t J  

(k) (i) 

(ii) if Dpr,i 1 SP'$ then q0,; - DPf,i - SP+ and spa,; (k) (k) ( k t 1 1  - (k) (k) (k+l) = 0. 

Proof 

Consider the pre-groups in the kth extended state (?('), T,(ktl)) and the post-groups 

in the (k+l)s t  extended state (?(ktl), T,("t2)) where k > 1. Clearly, the proposition is true 

for i = 0 since both the 0th pre-group in the kth extended state and the 0th post-group in 

(k) ( k i - 1 )  the (k + 1)st extended state are (T,(k+')). In this case, Sjf!o = Sj::') and Dpr,o = D p 0 , O  - 
We must also have either Spf,o (k) = 0 or DpfjO (k) = 0 since there is only one component in the 

0th pre-group. It is now a simple matter to verify both (i) and (ii) of the proposition are 

satisfied for this special case. 

To prove the proposition for other pre-groups, we consider, without loss of generality, 

the first pre-group (Tl (k), Tik) , * " ,  T(') p 2 - 1  ) in the kth extended state and the first post-group 

(T,(kt') ,  T ( W  , . . . , $2 kt1) ) in the (k + 1)st extended state. Since queues 1 and p2 are 1- 

priority queues, we have from Proposition 4.1 that 

(4.11) 

Subtracting (xi",,, T'k))+T,(ktl) + (a1 - at )  from both sides of the equation, we have 

1=2 1=2 

The left hand side of (4.12) is equal to (D$!l - SPr,,)  (k) and the right hand side is equal to 

(D::l) - S$:") following the same argument in Proposition 4.4. Therefore, 

(4.13) 
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It is clear that the above result holds true for p2 = 2 as well if we regard summation as 

zero when the lower summation index exceeds the upper index. In this trivial case, we 

have T,(ktl) = Tik) which implies either 

or 

In both cases, the proposition can be verified easily. 

We now prove the proposition for the non-trivial case where p2 > 2. Consider the 

(k) (k) case where p2 > 2 and Spf,l 2 Dpr,l. Then we have 

(4.14) 

If there exists I E { 2 , 3 , .  . . ,p2 - 1) such that q('+') > 0, let n be the minimum of these 

integers. Then 

(4.15) 

Using (4.14), we have 

(k+l) is which contradicts Tik+') > 0. Therefore, T, ( k t l )  = 0 for 2 5 15 (p2 - 1). Thus, Dpo,l 
( k t l )  equal to the deficit of T'';''). We also know that Sj::') is equal to the surplus of Tp2 

since queue p2 is the only 1-priority queue associated with the first post-group. Moreover, 

(4.13) and (4.14) show that Spo,l (k+l) 2 DLts". Therefore, Dpo,l (k+l) must be zero and so 

I 
I 

( I c + ' )  = Spr,l (k) - Dpf , l  (k) from (4.13). Hence, part (i) of the proposition is established. 
S P O J  
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. 

Consider the case where Spr,l (12) 5 D p r , l .  (k) If S::il) > 0, then T$") < (a1 - a2) .  Also 

from (4.13), we must have DL:;l) > 0. This means that there exists 1 E {2 ,3 , .  . . , p 2  - 1) 

such that T/ktl) > 0; let n be the maximum of these integers. Then 

which contradicts Tp';'') < (a1 - a2). Therefore, Sb::', = 0. Using (4.13) will establish 

part (ii) of the proposition. 

0 

The implications of Proposition 4.5 are important. The proposition implies that 

D$!i 2 ~ p o , i  ( k t l )  and S$!j 2 S:$" for 0 5 i 5 N1. Therefore, 

and 

i=O i=O 
(4.18) 

(4.19) 
i = O  i=O 

We can further conclude from Proposition 4.5 that if there is a pre-group in the kth 

extended state with non-zerc surplus and non-zero deficit, then 

and 

(4.21) 

This monotonicity property is the key to characterize the loops of a general system. 

If D ,  (k) > 0 and ST (k) > 0 but no pre-group has both non-zero surplus and non-zero 

(k) deficit, then D!$tl) = DT (k) and ST (k+l) = ST . In this case, we cannot guarantee strict 

decrement of deficit and surplus. The next result deals with this case. 

c 
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Proposition 4.6 Let Vjk' be the set of indices of all pre-groups in the kth extended state 

with non-zero surplus and Vjk' be the set of indices of all pre-groups in the kth extended 

state with non-zero deficit. Define the directional distance between two subsets V ,  U of 

(031, * - * , N l }  by 

( k )  ( k )  If d(Vik),  t$k)) > 0, then there exists a positive integer m such that d(Vd , V, ) > 
d ( v y + m ) ,  VJ(k+m)). 

Proof 

Let us use modulo (N1 + 1) arithmetic for indices of pre-groups and post-groups 

throughout this proof. We first notice that the directional distance function is not sym- 

metric, that is, d(U,  V) # d(V, U). However, d(V, U) 2 0 and d(V, U) = 0 if and only if the 

( k )  ( k )  sets V and U have at least one common element. If d(V, , V, ) > 0, then no pre-groups 

in the kth extended state has both non-zero surplus and non-zero deficit. Let i E VJk' and 
j E Vik)  such that ( j  - i) = d(V, ( k )  , V, ( k )  ) > 0. 

1 

Since Spr,; ( k )  > 0 and Dpr,; ( k )  = 0, then from Proposition 4.5, we have Spa,; (k+l '  = S"). In 

other words, the surplus of Tj,!) is equal to the surplus of 5!$::/. Thus, (i + 1) E V, ( k + ' )  . 
Pr,' * 

Since Dpr,j ( k )  > 0 and Spr,j ( k )  = 0, then we have DbtS" = DPrj  (k) . In general, the deficit 

of the j t h  pre-group will be distributed among the components of the j t h  post-group after 

one state transition. Thus, either j E Vjkt') or ( j  + 1) E Vk"+') or both. Furthermore, if 

j 4 Vik+'),  then the group leader of the ( j  + 1)st pre-group in the (k + 1)st extended state 

must have a non-zero deficit. 

We now show that if there is a 2-priority queue associated with the j t h  pre-group 

and that the group leader of this pre-group has a non-zero deficit, then j E Vjk+').  Let 

n be the smallest index of the 2-priority queues associated with the j t h  pre-group. If 

c 
24 



j $ v,(~+'), then we have 

However, (a1 - Tj!)) < a2 because the group leader is assumed to ha re a n n-zero deficit. 

Thus, Cik) < a2 and so TAkt') > 0, contradicting the hypothesis that j $ Vjkt'). There- 
fore, we must have j E Vd (k+') . 

With the above results, we can proceed to prove the proposition by contradiction. 

First of all, it is clear that d(Vd (k) , V, (k) ) cannot be larger than d(VIks'), V,(k+')) since 

( k + 4 ,  V,(k+m) 1 
( i  t 1) E V,(k+') and either j or (j + 1) belong to Vjk+'). In other words, the directional 

(k) (k) distance, if positive, cannot increase. Let us assume d(Vd , Vs ) = d(Vd 

for all positive m, then we must have j 4 I$'+') and so the group leader of the ( j  + 1)st 

pre-group in the (k + 1)st extended state must have a non-zero deficit. After another state 

transition, we must now have (j+l) $ Vjkt2). This means that there is no 2-priority queue 

associated with the ( j  + 1)st pre-group. Continuing this argument would show that there 

is no 2-priority queue in the system which is a contradiction. Thus, there exists a positive 

integer m such that d(Vd (k) , V, (k) ) > d(Vd (kSm) ,  V,(k+m)). In other words, the directional 

distance, if positive, must strictly decrease after a finite number of state transitions. 

Combining Propositions 4.5 and 4.6, we see that surplus and deficit of an extended 

state, if both positive, must strictly decrease as the system evolves. We state this as a 

theorem. 

Theorem 4.7 If D, (k) > 0 and Sg' > 0, then there exists a positive int,eger rn such that, 

Dg) > Dg+m) and sg) > sPSrn) 

Proof 
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(k) (k) If d(Vjk),vik)) = 0, then there exist i such that Spf, i  > 0 and Dpr,i > 0. Then by 

Proposition 4.5, we will have Df' > Df") and S!$) > S$!+'). 

If d(Vjk) ,Vik) )  > 0, then the directional distance must strictly decrease after a 

finite number of state transitions. This means the directional distance must eventually be 

zero. From above, we must have strict decrement in both surplus and deficit one state 

transition after the directional distance has become zero. 

0 

4.5 Characterization of Depletion and Non-depletion Systems. 

The discussion on surplus and deficit of an extended state provides the basis for 

characterization of recurrent sets of a general asymmetric system. A corollary of Theorem 

(4.7) is that all loops are either of the depletion type or all are of the non-depletion type. 

This is because if surplus exceeds deficit, the deficit will eventually become zero and the 

system will operate in depletion mode. Otherwise if deficit exceeds surplus, the deficit will 

never reach zero and hence the system will be in non-depletion mode. 

Corollary 4.8 

a1. 

The system will operate in depletion mode if and only if (N1+ l ) (cr l  -at..) 2 

Proof 

If ( N 1 +  1)(a1 -a2) 2  CY^, then from Proposition 4.4 the surplus is no less than the 

deficit of the same extended state. From Theorem 4.7, the deficit of an extended state will 

eventually become zero. Thus, the system will operate in depletion mode. 

If (N1+  l)(al  - a2) < a1, then from Proposition 4.3 the system will not operate in 

depletion mode. 

0 
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The above corollary is an obvious consequence of Theorem 4.7 and other previous 

results. It turns out that there is another non-obvious corollary that allows us to con- 

struct the non-depletion loops of a system from the depletion loops of another system with 

different parameters. 

Corollary 4.9 Define a decreasing sequence of numbers in terms of cyk and Nk by 

f 1 =  a1 ( 4 . 2 2 ~ )  

(4.22b) 

for k = 1, ..., M -  1. 

Let f n  be the last non-negative number in this sequence. Then queues with priority 

lower than n will not receive any service. Other queues will receive an average service per 

cycle of 

f o r k = l , 2  ,..., n. 

The average cycle length is given by 

for k = 1,2 , .  . . , n .  

Proof 

(4.23) 

(4.24) 

Consider a non-depletion system. From Theorem 4.7, we deduce that surplus of an 

extended state must be zero within a loop. If surplus is zero, then all 1-priority queues 

will receive services no less than (a1 - a2)- In this case, we can let U;(k) = T;'k' - (cy1 - ~ 2 )  
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(k) if queue i has priority 1 and Ujk) = Ti 

the Markov relations (3.6) and (3.7) as 

if queue i has lower priority. We can then rewrite 

. .  
3=z j=1 

and for 1-priority queues, 

and for low priority queues, 

(4.25) 

( 4 . 2 6 ~ )  

(4.26b) 

The above equations show that the vector I?(') = ( U ,  (k) , U2 (k.) , .. . , UN (k) ) corresponds 

to the system with 01 modified as (a1 - (N1 + 1 ) ( q  -  CY^)) and for 2 _< k 5 M, crk is 

modified as   CY^ - N I ( ( Y ~  - q)). We notice that 

cy1 - (Nl + 1)(CY1 - (Y2) = CY2 - N1(Cq - CY2) = f2 (4.27) 

Thus, we have transformed the system to a new equivalent system consisting of ( N l  + N2) 

1-priority queues with TRT equal to f2  and Nk ( I C  - 1)-priority queues with TRT equal 

to f2 - (a2 -  CY^) for 3 5 k 5 M .  

The new system with modified parameters is equivalent to the original system in 

the sense that we can construct the loops of the original system directly from the loops of 

the new system by adding (cy1 - a2) to the services of the original 1-priority queues. If 

the equivalent system has non-depletion loops, we can use the same argument to further 

transform the equivalent system to another one with (N1+ NZ + N3) 1-priority queues and 

largest TRT parameter equal to 33. We can repeat this argument (M - 1) times or until 
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the transformed maximum TRT is negative. At that point, we will have a symmetric or 

depletion system. 

After we have transformed the system to either a symmetric or depletion system, we 

can use the same steps discussed in subsection 4.2 to compute the average service per cycle 

of each queue with non-zero throughput as fn/(l+Cy=1 Ni) .  Recall that a t  each stage of the 

transformation, we have subtracted from the services of 1-priority queues the difference 

between the largest and the second largest TRT's. In the first stage, this difference is 

(at - a2). In the second stage, the difference is ((a2 - NI(cr1- a2)) - (a3 - NI(a1-  a2)))  

which is (a2 -as). Continuing, we see that at  the final stage of the transformation, we have 

subtracted (ak - a n )  from the services of the original k-priority queues where 1 5 k 5 n. 

Thus, the k-priority queues in the original system receive an average service per cycle of 

for k = 1 , 2 , .  ..,n. 

The average cycle time of queue i with non-zero throughput is the difference between 

the TRT and average service per cycle of that queue. It can be shown easily by induction 

that 

for 1 5 k 5 M. Using (4.23) and (4.28), we have 

(4.28) 

The above corollary is of major significance because it allows us to calculate the 

bandwidth allocated to  each queue from the system parameters Nk and auk. The bandwidth 
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allocation is shown to be linearly increasing in the TRT assigned. Two queues with the 

same TRT are given the same bandwidth and a queue is allocated more bandwidth than 

a queue with a smaller TRT. Thus, we have justified the assignment of priority based on 

the TRT parameters. 

Depending on the given parameters, some queues may not receive any service at  

all. This is in contrast to the service-limiting schemes with fixed quotas where no queues 

will be deprived of service. It is also interesting to note that the allocation of bandwidth 

is independent of the relative positions of the queues. In general, the transient state 

transitions, that is, how long and in what way does the system enter a loop, depend on 

the relative positions of the queues. Queueing behaviour of a non-heavily loaded system 

is also dependent on relative queue positions. 

4.6 Remarks on More General Systems. 

We have derived some very interesting results in previous subsections. However, 

these results apply only to heavily loaded systems with constant type I services, constant 

walk times and negligible overflows. We would like to comment on more general systems 

with these assumptions relaxed. 

First of all, we want to point out that all the results we have derived apply to 

continuous time systems as well. We have relied on the assumption that the system is 

time-slotted in only one occasion, namely, the monotonicity of deficit and surplus implies 

one of them converging to zero. This is used in the proof of Corollaries (4.8) and (4.9). It 

can be shown that even in a continuous time system, the deficit or surplus of an extended 

state will become zero after a finite number of state transitions. The proof is based on the 

observation that the number of pre-groups with positive surplus will strictly decrease if 

both surplus or deficit of an extended state remain positive. Since surplus of a pre-group, 
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if non-zero, is non-vanishing, we must have convergence to zero of either surplus or deficit 

after a finite number of state transitions. 

The second issue we want to address is the assumption of constant walk times. If 

we assume a logical ring is maintained, the assumption of constant walk times is valid for 

many real systems, such as Expressnet [12]. For other systems, we may have to consider 

the variances of token transmission time, propagation delay and bit delay at  a station, as 

discussed in [19]. In any event, if the variances of the walk times are small compared with 

their means, we can essentially regard the system as having constant walk times perturbed 

by “noise”. Clearly, the system characteristics depend very much on the magnitude of the 

perturbation. For extremely small perturbation, we expect that Corollary 4.9 still applies. 

As the perturbation increases, we would expect that some low priority queues, originally 

depleted of service, may have non-zero throughputs in a probabilistic sense by virtual of 

the fluctuations in the walk times. The detailed analysis can be carried out using equations 

(3.1) and (3 .2b) ,  treating the walk times as random variables. 

In many ways, the effects arise from non-constant type I services are similar to that 

from non-constant walk times. However, there is one major difference. Non-constant walk 

times can usually be treated as independent random variables, among different queues 

and different cycles. Depending on the nature of the application, services of a given type 

I queue may be essentially uncorrelated (e.g. interrupts to a peripheral device from a 

processor) or highly correlated (e.g. voice sources). For the case of uncorrelated services, 

we can proceed along the same avenue for non-constant walk times. For voice applications 

where the correlation can be modelled as a two-state Markov chain with a small probability 

of jumping from one state to the other, we can treat the system as being “quasi-static”. 

Thus, we assume the system is subject to infrequent perturbations that create surplus and 

deficit in an extended state; after such perturbations, the system is allowed to attain the 

steady state before the next perturbation. Hence, it is clear that the analysis of transient 
4 
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state transitions, which we did not investigate fully in this report, is also very important. 

The overflow effect, although similar to that arisen from non-constant walk times 

and non-constant type I services, has a distinct flavor. It is dependent on the statistics of 

type I1 packet lengths. The rigorous approach to study Lis effect is to modify equation 

(3 .2b)  to accommodate overflow. Unfortunately, the rigorous approach leads to rather 

intractable non-linear system equations. 

Finally, we would like to consider the removal of the heavy load assumption. If we 

remove the heavy load assumption, the vector of service times in a cycle is no longer a 

Markov chain. Instead, we have to consider the imbedded population process. Again, the 

rigorous approach leads to completely intractable mathematics. There have been many 

attempts, with different degrees of success, to derive bounds and approximations for token- 

passing systems with limited service disciplines but it is beyond the scope of this report 

to survey all such work. Heuristically, the heavy load situation is a “worst case” scenerio 

where the competitions among different queues are most prominent, for example, we expect 

that a queue will always be stable if its offered load is less than the throughput calculated 

from the heavy load analysis. Thus, we can obtain good bench marks for selecting system 

parameters based on the results derived under the heavy load assumption. 
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4.7 Numerical Examples. 

0 We shall work through two numerical examples in this subsection to demonstrate 

how we can apply the analytic results derived in this section. 

Example 4.1 Let there be three asynchronous classes of traffic with N1 = 4, Nz = 6, 

N3 = 9 and aiorg) = 105, cry) = 100, a t rg )  = 95 (slots). Let the total walk time W = 5 

(slots). Under the heavy load assumption, 

a) find the average cycle length, the average service time per cycle and throughput of 

a queue in each asynchronous class if there are no synchronous queues, 

b) repeat a) if there are 4 identical synchronous queues each using 5 slots in each cycle, 

c) find the throughput of a queue in each asynchronous class for N2 > 6 assuming 

synchronous traffic given in b), 

find the throughput of a queue in each asynchronous class for N1 > 4 assuming. 

synchronous traffic given in b). 

- 

d) 

Solution: 

Using (4.22~) and (4.22b), we have 

f1 = a p )  = 100, 

f 2  = f1- (a1 ( e q )  - apq’)( 1 + N1) = 100 - (100 - 95)( 1 + 4) = 75, 

f3 = f 2  - (a2 

All queues have non-zero throughputs. 

- aP’)(l+ N1+ N2) = 75 - (95 - 90)(1 + 4 + 6) = 20. 

Using (4.23), we have 

si = ( ( u i e q ’ - a ~ P ) ) + f 3 / ( l + N ~ + N 2 + N 3 )  = (100-90)+20/(1+4+6+9) = 11, 
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Using (4.24), we have 

Thus, 

C ( e q )  = a?) - SI = 100 - 11 = 89. 

C(Org) = C(eq) + W = 89 + 5 = 94. 

Let pk be the throughput of a queue in the kth asynchronous class. Then 

p1 = S 1 / C ' ( O r g )  = 11/94, 

p2 = S2/C(Org) = 6/94, 

p3 = S3/C'(Org) = 1/94. 

b) aieq) = a1 (erg) - (W + H )  = 105 - ( 5  + 20) = 80, 
d e q )  2 = a(20rs) - (W + H) = 100 - (5 + 20) = 75, 

atq)  = a 3  (erg) - (W + H) = 95 - (5 + 20) = 70. 

fl = 80, - 

. 
f 2  = 80 - (80 - 75)(1 + 4) = 55, 

f3 = 55 - (75 - 70)(1 + 4 + 6) = 0. 

Class 3 queues have zero throughputs. 

Si = (80 - 75) + 55/(1+ 4 + 6) = 10, 

3 2  = (75 - 75) + 55/(1 + 4 + 6) = 5, 

s 3  = 0. 

p i  = 10/95, 

P2 = 5/95, 

p3 = 0 .  

c) aieq) = 80, 

aieq) = 75, 
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= 70. 

fl = $0, 

f 2  = 55, 

f3 < 0. 

Class 3 queues have zero throughputs. 

S I  = 5 + 55/(5 + N2), 

52 = 55/(5 + N2), 

s 3  = 0. 

C ( e q )  = 75 - 55/(5 + N2), 

C(org) = 100 - 55/(5 + N2). 

pi = (16 + N2)/(89 + 20N2), 

p2 = 11/(89 + 20N2), 

p3 = 0. 

We see that as N2 + 00, p1 3 0.05 and p2 + 0. 

fl = 80, 

f2 = 75 - 5N1, 

f3 < 0. 

Class 2 queues have zero throughputs if N1 2 15. 

Class 3 queues have zero throughputs. 
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p i  = 22/(125 + 21N1), 

p2 = (15 - N1)/(125 + 21N1), 

p3 = 0. 

Example 4.2 K identical stations communicate with each other on a token-passing net- 

work that has a channel bandwidth of 10 Mbps and a round-trip propagation delay of 

20ps. Each station has one synchronous queue supporting a 64 kbps voice channel and 

three asynchronous queues requiring minimum bandwidths of 50, 40 and 10 kbps. Voice 

packets are 1280 bits long. Design an integrated services network supporting a maximum 

number of stations based on the THTITRT mechanism. 

Solution: 

We are required to select the design parameters THT, cyl ( O r g )  , O ( O f g )  and , p f g )  to 

maximize K while satisfying the bandwidth requirements and maintaining voice quality. 

Let us formulate the optimization problem. 

First of all, we shall assume all walk times are constant and the total walk time is 

given by the round-trip propagation delay, that is, W = 20. All time units will be in ps. 

We now look at the requirements of a voice channel. The time to transmit a voice 

packet is the size of a voice packet divided by the channel bandwidth which is 128. Thus, we 

let THT = 128 for all station. We shall assume that a t  steady state, all stations transmit a 

voice packet in each cycle. Hence, H; = 12.8 and H = KH; = 128K. For voice application, 

overdue packets that are not delivered before the next packet arrival will be discarded. To 

maintain voice quality, we impose a maximum access delay requirement that is equal to 

the inter-arrival time of voice packets. The inter-arrival time can be obtained by dividing 

the voice packet size by the voice bandwidth. Thus, we have R,,, = 20,000 2 m j b r g ) .  
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. The bandwidth allocated to a queue in each asynchronous class is given by the 

throughput pi times the channel bandwidth B. If B; is the minimum bandwidth require- 

ment of class i asynchronous queues, we must have piB > Bi for 1 < i < 3. The throughput 

is given by 

Thus, we must have 

Using (4.24), we have 

Rewriting the above inequality, we have 

where I ;  E 1 + B ; / B  and r; E a{org)/l; provided 

1 5 i 2 3 .  

> W and (THT + Zjrj) > 3r; for 

The formal optimization problem is to maximize K with respect to { aiorg)} subject 

to the constraints 

(4.29) 

(4.30) 

To solve the optimization problem, we first observe that if we ,.eep F E l jr j  fixed, 

then the most severe constraint given by (4.29) is the one with the smallest r; .  Thus, the 
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optimization problem becomes that of maximizing the minimum of r; for a fixed Cj,l l j r j .  

Clearly, the optimum point is at  TI  = r2 = ~ 3 ,  that is, aiorg) is proportional to (1 + B ; / B ) .  

Thus, we can rewrite (4.29) as 

(4.31) 

From (4.31), we see that to maximize K,  we must maximize F. To maximize F, we 

maximize crlbrg). Thus, the maximum value of K is obtained by Ietting crlbrg) = R,,, with 

 CY^) and a t r g )  selected according to the proportionality criterion. 

We can now substitute the numerical vaIues. For rounded numbers, we let R,,, = 

19,095 instead of 20,000. Thus, we have 

THT = 128, 

cr(lorg) = 19,095, 

= 19,076, 

cry) = 19,019, 

K,,, = 59. 

The reader can check the above figures by calculating the bandwidth allocated to a queue 

in each class using those figures. We caution the reader once again that the above figures 

are obtained under the heavy load assumption with constant type I traffic, constant walk 

times and negligible overflows. Practical design may require additional considerations that 

are beyond the scope of this report. 
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5. Summary. 

Integrated services LAN is a relatively new area of interest. Severe delay constraints 

required by many real-time applications cannot be met by LAN protocols originally de- 

signed for conventional computer communication. A class of integrated access protocols 

are based on token-passing with control on the cycle lengths. We have examined one such 

protocol, which is proposed in the IEEE 802.4 token bus standard. In the IEEE 802.4 

standard, timers are used to control channel access of different classes of traffic. From a 

practical point of view, the timing mechanism employed in the standard is both robust 

and easy to implement. 

We used a rather general cyclic queueing model to investigate the throughput per- 

formance of different classes of traffic in the IEEE 802.4 protocol under heavy load with 

constant synchronous traffic, constant walk times and negligible overflows. The problem 

is essentially that of characterizing state transitions of a deterministic Markov chain. We 

have shown that access delay of a type I queue is bounded by the largest TRT parameter 

of the system. We have also found, using the monotonicity property of surplus and deficit, 

a simple characterization of the steady state service pattern in a cycle. It was found that 

under heavy load, the bandwidth allocated to an asynchronous queue is an increasing lin- 

ear function of its T R T  parameter. In this respect, a queue with larger TRT indeed have 

a higher priority. 

The results we have obtained under the heavy load assumption provide guidelines 

for practical design. We have also discussed very briefly on more general systems that 

deviate from the basic assumptions made in this report. Finally, we worked through two 

numerical examples. The first example is a direct application of the results derived in this 

report. The second is a practical design example, aiming to illustrate the usefulness of the 

results presented. 
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